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SUMMARY

This paper discusses some of the considerations involved in the use of

feedback control as a means of eliminating or alleviating rotordynamic instabil-

ity. A simple model of a mass on a flexible shaft is used to illustrate the

application of feedback control concepts. A description is given of a system

now being assembled at the University of Virginia which uses feedback control

to support the shaft bearings.

INTRODUCTION

The feasibility of using active feedback control of rotor dynamics by the

active control of some or all of the forces in the bearing support system is

the subject of research just started at the University of Virginia. If such an

approach is feasible, or even partially so, many benefits could accrue to those

now having problems of rotordynamic instability.

To study this approach a rotor system using control concepts is now being

assembled. It consists of a flexible shaft mounted horizontally in ball bear-

ings at the ends and having provisions for mounting one to three masses. The

bearings are each supported by two high-fidelity speaker motors which have a

linear range in excess of any expected transients. These motors are mounted at

ninety degrees to each other. Induction-type proximity sensors are used to

sense shaft position at the bearings and at the central mass. The position

signals are then input to the control system, which supplies gain and compensa-

tion for the servoamplifiers driving the motors.

The system is designed to use either analog control or computer control of

the individual control loops. Initial efforts will use relatively simple con-

trol algorithms, but ultimately it is expected that the system will have aspects

of pattern recognition and will be adaptive to running speed and to other sys-

tem parameters.

To illustrate some of the potential benefits of using feedback control, a

simple model is analyzed here from the control standpoint. Parameters for the

model are selected to be close to those for a system which was the subject of a

doctoral dissertation by Marvin Taylor at the University of Virginia in 1979.

This work reported on the active feedback control of a rotating cup containing

a steel ball which was free to rotate around the inner periphery of the cup.

The cup was mounted on a slender shaft, positioned vertically and supported at

*This work was sponsored in part by the Department of Energy under

Contract DE-AC01-79ET 13151.
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the upper end only. This study was limited in that motion was sensed and con-

trolled in the plane of unbalance. However, Taylor was able to control not

only the vibration amplitude at the critical speed but also the whirl of the

ball in the cup.

NOMENCLATURE

A(s) loop gain

a. polynomial coefficients
i

c shaft damping, N s/cm (ib sec/in)

ci support damping, N sec/cm (ib sec/in)

G(s) control transfer function

Gc(S) overall feedback transfer function

j (-i) I/2

K control gain

k shaft stiffness, N/cm (ib/in)

kI support stiffness, N/cm (ib/in)

L load disturbance

m rotor mass, kg (ib sec2/in)

Pi control and system poles

r unbalance position, cm (in.)

s Laplace variable

u control signal

Z displacement of mass center, cm (in.)

Z1 displacement of bearing center, cm (in.)

z. control and system zeros1

ratio of support stiffness to shaft stiffness

damping ratio

_i phase angles

frequency, rad/sec

natural frequency
r

ILLUSTRATIVE SYSTEM

The system to be modeled and controlled is shown in figure i. For this

study complete symmetry is assumed and the bearings are considered as massless.

The springs provide the basic support and the control force is additive at the

same point. This allows the system to be considered as being of third order.

The equations of motion are
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ClZ1 + klZ 1 + k(Z 1 - Z) = u (i)

mZ+ cZ + k(Z - ZI) = L (2)

where L represents the loading at the mass due to unbalance and u is the

control force to be applied. We take the Laplace transform and solve for trans-

fer functions of Z and Z1 with input u. The unbalance force we will con-

sider as being a load disturbance.

In addition, the shaft damping is considered as negligible. The transfer

functions are

(ClS + k + kl)L + ku
(3)

Z = (s3 k +klmcl 2 k I/kkl_mc I + s + --ms + m---_.J

(ms 2 + k)u + kL
= (4)

Zl (s kkl_

3 k+kl 2 k

mcl + Cl s +-- s+m_cl/m

The denominator of both equations will have one real root and a pair of complex

roots. Using this fact and noting that we need to separate the load and control

effects, we can write

Z = + Cl(S + Zl )
m(s + pl )(s 2 + als + a0)

In this form a block diagram can be drawn. This is shown in figure 2, where

control and sensor blocks have also been added. In this instance the sensor is

assumed to give position and velocity information.

An actuator, the control motor, is assumed to have the transfer function

P2

s + P2 (6)

and the controller is assumed to have the form of a gain and a lead-lag func-

tion. Combining these factors results in the overall control transfer function

-K(s + z2)(s + zI)
G = (7)

c (s + p3 )(s + pl )
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Combining this with the system transfer function gives a loop gain A(s), which
can be used to plot a root locus, which in turn can be used to select the gain
and set the control poles and zeros. This function is

Kl(S + z2)(s + z3)
A = (8)

(s + pl )(s + p2 )(s + p3 )(s 2 + als + a0)

As mentioned earlier, the parameters for this system were chosen to be approxi-
mately equivalent to Taylor's system. This had k = 20.8 Ib/in and

mn = 85.5 rad/sec. A number of systems were considered that have second-order

parameters close to these. These are listed in table I. Here the entering

point is the first column, which is the ratio of support stiffness to shaft

stiffness. The second column is the support damping. For each pair of values

of these parameters the real pole and zero, the complex poles, and the quadratic

coefficients are listed. The parameters chosen for this study are in the row
marked with an asterisk.

Root loci of this system for two different values of the control zero are

given in figure 3. Also, taking advantage of the vertical symmetry of root

locus plots, the lower half plane shows a locus of the system complex poles for

a spring rate ratio of 1 and a variable damping factor. The point on the locus

for cI equals 0.5 is marked with an x, the standard open-loop pole symbol.

Its complex conjugate is used in the upper half plane as the starting point for
the root loci.

Considering these loci, the solid line is the complex locus with the sys-

tem motor pole at -200 and a zero at -i. The control compensator pole is at
-400 and its zero is at -I00.

The dashed line represents the same system except that the compensator

zero is moved to -40. The effect is to move the complex locus farther to the

left of the imaginary axis. In addition, a new complex locus appears near the
real axis.

A root locus is a plot of all possible roots of the closed-loop system

with K as the variable parameter. Thus the effect of closing the control

loop is very apparent in this case. The principal effect is that the original

system poles are eliminated and a new set of poles are established. These

poles can be located at any particular points on the branches of the loci by

picking a particular value of the control gain K. The poles on the upper com-

plex branch are the ones of particular interest since they will tend to dominate

the dynamics of the system. They could be selected for maximum damping or to

move them far away from the original system natural frequencies. They represent

a quadratic pair in the closed loop system. Considering them only, their damp-

ing factor is represented by the arccos _, measured from the negative real

axis. In figure 3 the maximum _ lines are shown for both upper branches, and

the minimum _ line is shown for the lower complex branch.

Four values of gain were chosen for calculation of the closed-loop fre-

quency responses of the system. The resulting closed-loop complex poles are re-
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presented by the numberedsquares on the upper branches. The results are shown
in figure 4. Curve I is for poles located at point I on the solid locus. The
resonant peak is about 1.6 at approximately 200 rad/sec. Curve 2 is for the
dashed locus with the complex poles having about the sameimaginary value as
the first case and with the control zero at -40. Curve 3 is from the same
locus with the control gain lowered to place the upper complex poles at near
maximum _. For curve 4 we return to the solid locus and raise the gain to
place the complex poles at near the point where the locus crosses the imaginary
axis, the point of control loop instability. The response is unboundedfor
practical purposes at about 270 rad/sec.

EXPERIMENTALMODEL

The experimental model has already been described and is very similar to
the model of figure i without the symmetry limitation. Also, the control sys-
tem almost completely replaces the spring-damper support system and the bearing
massesbecomesignificant. The analog control system will be of the sameform
as in the example. All its parameters will be adjustable, and there is provi-
sion for making it somewhatadaptive to rotor speed.

The computer control is affected by replacing the control block in fig-
ure 2 by a single block Intel 8086 microprocessor and peripherals. Input and
output are through appropriate analog-to-digital and digital-to-analog conver-
ters. This microprocessor can handle 16-bit words, which allows greater flexi-
bility and precision but which causes it to operate a bit slower than some8-bit
microprocessors. However, preliminary estimates indicate that a computation
cycle can be completed about every I0° of rotation of a shaft turning at 6000
rpm. The initial programmingof the microprocessor will be of a proportional-
plus-rate type with adaptivity to rotor speed and potential for adapting to
other parameters.

CONCLUSIONS

The example presented illustrates someof the ability of feedback control
to modify the basic characteristics of a rotor system. Potential advantages in-
clude the possibility of easily negotiating critical speed ranges; lossless
electronic damping; and adaptation to changing load conditions, age, lubricant
characteristics, and other factors. In addition, computer control offers the
potential of parallel, or even on-line, analysis of system characteristics as a
meansof recognizing potential trouble and of adapting the control system in an
optimummanner.

Yet to be considered in detail are a myriad of the problems of real sys-
tems. These include all the present problems, which are well known in rotor
dynamics, and adds the problems of control systems. These latter include band-
width limitations of control components; design of control motors; power and
force levels; nonlinearities, particularly signal limiting; observability of
appropriate system states; selection of optimum control algorithms; computation
speed; and manyothers. Somerecommendationswith respect to the feasibility
of solutions for someof these problems will be madein the near future. An
adequate number of problems will remain for several years of research effort.
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The experimental rotor rig was completed by May20, 1980. It consists of
three rotor disks totaling i0 pounds. They are mounted on a i/2-inch-diameter
shaft with a spring rate of 1040 ib/in. The analog control system was opera-
tional on May 21, 1980. Initial testing appears to indicate that the perfor-
manceexceeds expectations. The system was able to run to 6000 rpm without the
rotor having been balanced and with no difficulties in negotiating critical
speeds.

Efforts in the immediate future will be on the computer control system and
on careful testing and evaluations of the system with either analog or digital
control. Experimental work will be under the direction of Dr. Ronald Flack,
Assistant Professor, Department of Mechanical and Aerospace Engineering,
University of Virginia.
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TABLEI. - SYSTEMCHARACTERISTICS

io

cI

0.i

I

5

0.05

.i

.5

i

5

i0

20

0.I

I

5

0.i

.5

i

5

i0

0.I

.5

1

5

i0

Real

-296

-10.6

-2

-829

-408

-53

-22

-4

-2

-I

-621

-46

-8

-1249

-245

-117

-21

-I0

-2084

-414

-205

-38

-19

Complex

-8±5oj

-io±84j

-2±85j

-2±6oj

-4.4±61j

-15±74j

-io±82j

-2±85j

-i±86j

-.5±86j

-2±7oj

-8_+8oj

-2±85j

-0.5±78j

-2±78j

-4±80j

-2±85j

-i±85j

-0.2±81j

-l±81j

-2±81j

-2±85j

-I±85j

Quadratic coefficients

i 16 2539

1 21 7095

I 4.1 7298

4.4 3629

8.9 3692

31 5695

20 6871

4 7298

2 7311

i 7310

I 4 4848

i 17 6549

i 4 7280

_V

i 6025

5 6138

8 6415

4 7229

2 7294

I;

0.4 6503

2 6530

3 6613

4 7161

2 7270

Zero

-312

-31

-6

-833

-417

-84

-42

-8

-4

-2

-625

-63

-12

-1250

-250

-125

-25

-12

-2084

-416

-208

-42

-21
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Fig. 3 Root Locus
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